Fortus Square Foot™

Installation Guide

Step-by-step details on how to properly construct Fortus Square Foot™ segmental retaining walls that will stand the test of time with beautiful results.
Fortus Square Foot™
Design, Installation and Economic Advantages

The Fortus Square Foot™ system redefines the way retaining walls are designed and built. Ideal for everything from residential landscaping to commercial projects, Fortus Square Foot’s beautiful and distinctive color blends are unsurpassed in the industry and feature a perfect combination of beauty and strength. Bring your dreams to reality through Fortus Square Foot’s maximum layout creativity when building curves, corners and angles as well as set-back or near-vertical walls. Due to its patented SecureLug™ Variable Connection System, The Fortus Square Foot™ system combines durable, precast concrete with incredible ease of installation. When stacked and filled with aggregate, the lightweight and easy to handle Fortus Square Foot™ units interlock, providing high shear resistance and excellent connection strength to geosynthetic reinforcement, if required. For value, beauty, durability and ease of construction, your best choice is the Fortus Square Foot™ Retaining Wall System by LibertyStone™ Hardscaping Systems.

Fortus Square Foot™ has been thoroughly tested for connection and strength in accordance with the design methodology promoted by the National Concrete Masonry Association (NCMA). Fortus Square Foot’s patented SecureLug™ Variable Connection System, when combined with gravel infill and geosynthetic reinforcement creates a strong, long lasting retaining wall. Fortus Square Foot™ can be built with a standard set-back, through the use of its segmented rear lugs, or installed near-vertical, by removing the rear lugs and engaging its center lugs. Regardless of which set-back that’s chosen, Fortus Square Foot’s Variable SecureLug™ connection system allows for significant lateral movement without losing the connection interlock. Fortus Square Foot™ walls flex with seismic pressures and resist weathering. The hollow core of each unit provides excellent drainage, reducing the buildup of hydrostatic pressure. The light weight Fortus Square Foot™ unit does not require the use of expensive pins or clips and promotes layout flexibility, while saving time and expense during installation.

- Ultra-light weight for improved shipping and handling
- Variable SecureLug™ Connection System allows for set-back & near vertical wall installation
- Increased vertical drainage through the units
- Recessed “hand-holds” allow for the unit to be installed with incredible ease
- Strong and reliable connection between units and geosynthetic reinforcement
Table of Contents

- Installation Step-by-Step ... 1
- Gravity Wall ... 8
- Geogrid Reinforced Wall ... 11
- Wall Details ... 12
- Base Elevation Changes ... 13
- Convex/Outside Curves .. 14
- Concave/Inside Curves ... 15
- Outside Corner .. 16
- Inside Corner ... 17
- Stair Details .. 18
- Pillar Details .. 22
- Estimating Charts ... 24

Fortus Square Foot™ Units

Straight Face Units

- **Fortus Square Foot™**
 - **8” Straight Face**

 - Weight: 58 lbs
 - **Face Area** = 1 sq. ft
 - 8” Height x 18” Width x 10” Depth

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>8” Height x 18” Width x 10” Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face Area</td>
<td>1.00 FT²</td>
</tr>
<tr>
<td>Solid Volume</td>
<td>0.40 FT³</td>
</tr>
<tr>
<td>Volume of Voids</td>
<td>0.406 FT³</td>
</tr>
<tr>
<td>Weight</td>
<td>58 LBS</td>
</tr>
</tbody>
</table>

90° Corner Units

- **Fortus Square Foot™**
 - **8” 90° Corner Unit**

 - Weight: 74 lbs
 - 8” Height x 18” Width x 9” Depth

Cap Units

- **Fortus Square Foot™**
 - **3” Cap Unit**

 - Weight: 52 lbs
 - **Face area**: .375 sq. ft
 - 3” Height x 18” Width x 12” Depth

<table>
<thead>
<tr>
<th>Faces</th>
<th>Varies</th>
<th>*All dimensions vary between manufacturers. Verify with local producer for correct measurements.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravel Filled Weight</td>
<td>105 lbs</td>
<td></td>
</tr>
<tr>
<td>Concrete Filled Weight</td>
<td>115 lbs</td>
<td></td>
</tr>
<tr>
<td>Batter/Setback</td>
<td>4.5° – 5/8”/UNIT</td>
<td></td>
</tr>
</tbody>
</table>

Use Rear Lugs for Typical Setback Walls

Use Center Lugs for Near Vertical Walls
Gravity (SRW) segmental retaining wall systems are structures lower in height that use the Fortus Square Foot™ unit weight combined with gravel core infill to resist earth pressures behind and on top of the wall. The units combined batter of (4.5 degree or 1”/vertical foot) or near vertical setback of the wall along with proper soil conditions below and behind the wall provide the stability of the structure. For walls 3.0 ft and taller a qualified engineer should be consulted.

★ Please Note: Bolded installation terms are defined in our online glossary at: www.liberty-stone.net/glossary
• Mark the bottom and top of the wall excavation location with spray paint or stakes;
• Establish proper elevation bottom and top of wall before excavating;
• **Organic Materials** should not be used in **Structural Backfill Zone**;
• Store and protect **Structural Backfill Materials** from inclement weather during construction.

Step 2 Excavation

• Excavate and prepare **Sub Base Leveling Pad Trench** 6” below first course;
• **Leveling Pad** trench is approximately 2.5’ to 3’ wide;
• Normal wall **Burial Depth** or **Embedment Depth** is 6” to 12” or one block (for more information refer to design manual);
• Excavate cut line to a 2 to 1 slope or greater;
• Back of wall excavation depth into the bank should be 12” beyond the back of the **Sub Base Leveling Trench**.

Step 3 Sub Base Compaction

• Compact **Sub Base** to 95% **Standard Proctor Density** or greater;
• Remove any **Organic** or poor soils in the **Sub Base** and replace with proper **Structural Fill Materials** before compacting.
Gravity Wall

Step 4 Base Stabilization

- (Optional) place 5’ to 6’ wide **Base Stabilization Fabric** on top of leveling pad trench;
- **Base Stabilization Fabrics** will help prevent sub base materials from mixing with the gravel base leveling pad during compaction;
- Fabric also provides extra **Structural Bearing Stability** to the base leveling pad.

Step 5 Rough Leveling Pad

- Place **Well Graded Gravel** (also known as Road Base Aggregates) on top of fabric in the leveling pad trench approximately 6” deep;
- Rough grade gravel with a rake close to finish base elevation.

Step 6 Compact Levelling Pad

- Compact the **Gravel Leveling Pad** to 95% **Standard Proctor Density** or greater;
- **Correct Moisture Content** in the gravel will help in reaching proper compaction.
Step 7: Level Screed Pipes

- Place first 3’ long Screed Pipe across the trench at one end of the wall or at the lowest elevation;
- Scratch a trench for the pipe in the compacted gravel with a chipping hammer;
- Use a 2’ level or Laser Level to set the screed pipe to the proper level. Add gravel underneath and around screed pipe to support while leveling;
- Place the second screed pipe across the trench approximately 9’ from the first screed pipe. Level the second screed pipe to the same elevation as the first screed pipe by using a 4’ level on top of a Screed Board, Straight Edge or with a Laser Level;

Step 8: Extra Gravel

- Continuing on from the previous step, place and level screed pipes the full length of the trench leveling pad or until reaching a base elevation change.
- Place or remove extra Well Graded Gravel (also known as Road Base Aggregates) level to the top of the screed pipes as needed;
- (If more than 1 ½ inches of loose gravel is added, repeat the compaction steps again before screeding).

Step 9: Screeding Leveling Pad

- Screed the gravel leveling pad with a Screed Board or Straight Edge across the trench on top of two screed pipes;
- The coarser the gravel the more back and forth the screeding action when drawing the Screed across the leveling pad;
- Too much pressure on the screed straight edge may dislodge the level of the screed pipes while screeding;
- A second screed pass may be needed to insure an accurate level has been achieved;
- Continue to screed the leveling pad until completing the full length of the trench or up to the first elevation change.
Gravity Wall

Step 10 Remove SecureLugs

- Remove the screed pipes from the leveling pad;
- Place a steel stake or unit at either end of the leveling pad to establish the back of the first course of units;
- Secure tightly a string line to the stakes or units at either end which will provide the guide to line up the back of each base unit;
- The distance of the string line between the steel stakes or units may vary due to heavy winds.

Step 11 Lay First Course

- Base units will have all rear and center SecureLugs removed before placing on the leveling pad;
- Place each unit on top of the leveling pad in such a way as not to disturb the level gravel;
- Units are laid snug together and parallel to the straight or curved line.

Step 12 Level Units

- A rubber mallet should be used if unit height and alignment adjustment is needed;
- Use a short 2’ level to make sure the units are level front to back;
- Use a 4’ level to make sure the units are level unit to unit along the length of the wall;
- Correct batter and straight horizontal lines in the completed wall depend on the accuracy of the base leveling pad and units.
Step 13 Impermeable Fill

- Backfill behind, in front (toe of wall) and in the hollow cores of the units with Impermeable Materials up to the desired level of the Perforated Drain Pipe or to the top of the first course;
- Compact the impermeable materials behind, in front and in the hollow cores of the units;
- Sweep the top of the units clean of all rock and dirt before placing the next course of units;
- Sweeping should create a 1/2” void in the core to accommodate the Rear Lug’s interlock.

Step 14 Drain Pipe Outlet

- Perforated Drain Pipe should have adequate slope to drain water in the right direction towards each Drain Pipe Outlet;
- Drain Pipe Outlet can be every 30 or 50 feet;
- Perforated Drain Pipe can be a Sock Wrapped system to help prevent fines from migrating into the pipe.

Step 15 Backfill

- Place and compact Backfill Materials in maximum Lifts of 8” for Fortus Square Foot™ units. Lifts may be less in height depending on the type of soil or size of equipment;
- Backfill materials will be placed 6” to 12” behind the units allowing for Clear Crush Drain Gravel (Angular Aggregates free of fines) between the units and compacted backfill materials;
- By adding Clear Crush Drain Gravel (Angular Aggregate free of fines) after compaction of Backfill Materials, this will prevent undue pressure against the wall which can cause the units to move out of alignment;
- Each lift should be compacted to 95% Standard Proctor or greater;
- The correct Moisture Content in the Backfill Materials will help in reaching proper Compaction Density.
• **Clear Crush Drain Gravel** (Angular Aggregates free of fines) is placed in the hollow cores and 6” to 12” behind the wall units after compaction of the **Backfill Materials**. This will prevent undue pressure against the wall which can cause the units to move out of alignment;

• **Clear Crush Drain Gravel** does not need to be compacted;

• Sweep the top of the units clean of all rock and dirt before placing the next courses;

• Make sure the **Clear Crush Drain Gravel** directly behind the wall units is placed flush to the top of the units;

• Make sure the **Backfill Materials** are as well compacted and level as possible.

Step 17
Continue Installation

• Continue to install each course of units following the same steps as above;

• Install and compact **Backfill Materials** in 8” lifts for Fortus Square Foot™ until wall is complete;

• Grout around **Drain Pipe Outlet** to prevent **Clear Crush Drain Gravel or Drainage Aggregates** (Angular Aggregates free of fines) from migrating.
• Complete the top of the wall with cap units;
• Properly secure the cap units using a **Concrete Adhesive**;
• Make sure all units are free of dirt and stones before installing the caps;
• Place a solid bead of **Concrete Adhesive** around the top of each unit.
• Place a bead of adhesive between each joint of the cap units.

Step 19 Drain Pipe Outlet

• Place a 6 ft wide **Soil Separating Filter Fabric** on top of the backfill and drainage gravel and against the back of the last units before placing the planting soils;
• The fabric will prevent planting soil fines from staining the face of the wall and migrating into the **Clear Crush Drain Gravel** (Angular Aggregate free of fines).

Step 20 Backfill

• Insure that final grading is done on top and bottom of the wall;
• Make sure to protect newly placed planting soil from erosion during heavy rains or surface runoff.
Geogrid Reinforced Wall

Creating a Fortus Square Foot™ reinforced wall system involves the use of geogrids for reinforcement. Walls 3.0 ft and taller will automatically have active pressures because of their height. Walls smaller than 3.0 ft may also require geogrid reinforcement depending on other related factors. Parking lots, roadways, or positive slopes above walls for example, require the use of reinforcement to help resist the increased pressure behind the wall. Geogrid used with the appropriate lengths, layers, and compacted backfill materials will resist these active forces above and behind the wall. For walls 3.0 ft and taller a qualified engineer should be consulted.

★ Please Note: Bolded installation terms are defined in our online glossary at: www.liberty-stone.net/glossary
Step 1 Planning

- Excavate and prepare **Sub Base Leveling Trench** 6” below first course;
- **Leveling Pad Trench** is approximately 2.5’ to 3’ wide;
- Normal wall **Burial Depth** or **Embedment Depth** is 6” to 12” or one block (for more information refer to design manual);
- Excavate cut line to a 2 to 1 slope or greater;
- Back of wall excavation depth into the bank at the base of the wall should be from the face of wall to the designed length of **Geogrid**.

Step 2 Cut Geogrid

- Cut **Geogrid Reinforcement** to the length specified in the design;
- Geogrids are manufactured in two directions Uni-axial or Bi-axial. Uni-axial grid has one direction of strength and that direction has to be oriented perpendicularly to the face of the wall during installation. Bi-axial grid can be laid in two directions, perpendicular and lengthwise to the face of wall (ensure that the lengthwise direction is still in accordance to the length specified by the Engineer’s design);
- Correct geogrid orientation, strength and length is crucial to the success of the wall project;
- Each geogrid length should be laid parallel and adjacent to each other but never overlapping.
• Place the geogrid as far forward on the units as possible without revealing it on the face;
• Place the next course of units on top of the lower units and geogrid at a half bond;
• The two Rear Lugs will fit securely against the back of the two units below and lock the geogrid into the gravel core;
• Pull the unit forward to engage and align the Rear Lugs;
• Complete the installation of units on the Geogrid Reinforced courses;
• Make sure each unit is installed against the next unit, leaving no gaps between unit joints;
• Tension the geogrid in such a way as NOT to disturb the alignment of the upper units;
• Use stakes or backfill materials to maintain the tension during backfilling;
• Do not drive equipment directly on top of geogrid.

Step 4 Reinforced Backfill

• Backfill and Compact the Reinforced Zone by placing materials from the back of the wall towards the end of the geogrid;
• Install drainage gravel in the cores and 6” to 12” behind the units after placing and compacting backfill materials;
• Install and compact Backfill Materials in 8” lifts for Fortus Square Foot™ until wall is complete.
Wall Details

This section provides detailed, illustrated step-by-step instructions for using Fortus Square Foot™ to construct wall details including: inside curves, outside curves, elevation changes, and both inside and outside corners. Curves, corners and elevation changes are the portions of a wall project that adapt to the specifics of the site and the needs of its users. Correct construction and professional completion of these wall details greatly enhances the visual appeal of the finished project and avoids the time and costs associated with improper installation.

★ Please Note: Bolded installation terms are defined in our online glossary at: www.liberty-stone.net/glossary
• The top of the installed base unit will be used to establish the step up gravel leveling pad elevation;
• Make sure to backfill and compact the gravel in and around the last unit of the first course;
• Finished grade of the leveling pad should be an 1/8” to 1/4” above top of first course units to allow for a small amount of settlement;
• Repeat the above screeding steps on the second elevation gravel leveling pad;
• Place the first unit on the second course at a half bond on top of last & second last of the first course units;
• The rear SecureLugs will fit against the back of the two units below. To align the wall, place a string line at the back of the units for a straight wall or place a PVC pipe for a curved wall;
• Pull upper unit forward to engage and align units;
• The batter or set back will be 5/8”/unit (4.5 degree or 1”/vertical foot) for Fortus Square Foot™;
• Place the second unit half on the last unit and half on the second gravel leveling pad. Ensure that the Rear and Center Lug are removed on the leveling pad side of the unit.

- Top of Base Unit
- First Unit Second Course
- Base Leveling Pad

- Well Compacted

- Second Unit One – SecureLugs that Sit on Base Leveling Pad Removed

- Corner Unit
- Third Unit – Both SecureLugs Removed

- Capping Units Attached with Concrete Adhesive
Convex/Outside Curves

Step 1 Convex First Course

- If possible, start building a curve from the center and work left and right through the curve;
- Use PVC Flex Pipes to create smooth and accurate Convex curves;
- Use the back of the unit for alignment;
- Build each course of units by starting at the same place and the same bond as the last course;
- Convex curves have a slight increase in batter or setback to the standard 5/8” for Fortus Square Foot™;
- The taller the wall the larger the Convex first course needs to be. The radius of each additional course will be slightly smaller than the lower course;
- Minimum Convex curve is approximately 3.6 foot radius.

Step 2 Convex Geogrid Curve

- Each geogrid length should be laid perpendicularly to the wall face;
- Geogrid should not overlap on the units;
- Correct geogrid orientation, strength and length is crucial to the success of the wall project.
Concave/Inside Curves

Step 1 Concave First Course

- If possible, start building a curve from the center and work left and right through the curve;
- Use PVC Flex Pipes to create smooth and accurate Concave curves;
- Use the back of the unit for alignment;
- Build each course of units by starting at the same place and the same bond as the last course;
- Concave curves have a slight increase in batter or setback to the standard 5/8” for Fortus Square Foot™;
- The taller the wall the smaller the Concave first course needs to be. The radius of each additional course will be slightly larger than the lower course;
- Minimum Concave curve is approximately 3.6 foot radius.

Step 2 Concave Geogrid Curve

- Each geogrid length should be laid perpendicularly to the wall face;
- Geogrid should not overlap on the units;
- To ensure 100% coverage, place a second layer of geogrid centered to the unreinforced triangle zone one course above the main geogrid layer;
- Correct geogrid orientation, strength and length is crucial to the success of the wall project.
Outside Corner

Step 1 Outside First Course

- Use a 90° Corner unit to build an outside corner;
- Place the first 90° Corner unit on the base leveling pad to start the outside corner;
- Place a unit on either side against the 90° Corner unit;
- Continue to lay the Fortus Square Foot™ base course on either side of the corner until first course is completed;
- Flip and turn the second course 90° Corner overlapping the short side and half of the base unit. This unit should be pushed back 5/8” for Fortus Square Foot™;
- Continue to lay the second course on either side of the corner until second course is completed;
- The 90° Corners can be glued or concrete core filled to ensure a proper course to course outside corner interlock.

Step 2 Outside Geogrid Corner

- Each geogrid length should be laid perpendicularly to the wall face;
- Geogrid should not overlap on the units;
- Lay the 1st geogrid corner section perpendicularly to one side of the corner;
- Lay the 2nd geogrid section perpendicularly to the other side of the corner but not overlapping the 1st geogrid section;
- Lay the secondary geogrid layer one course above and perpendicular to the lower main geogrid layer directional strength;
- Correct geogrid orientation, strength and length is crucial to the success of the wall project.
First Geogrid Section:
- Lay the first geogrid corner section perpendicularly to one side of the corner and overlap h/4 through the backfill (Height of Wall ÷ 4);
- Lay the second geogrid layer perpendicularly and overlap h/4 through the backfill opposite to the first geogrid layer;
- The h/4 overlap will alternate layer to layer to properly secure the inside corner;
- Correct geogrid orientation, strength and length is crucial to the success of the wall project.

Second Course Staggered 5/8”
- Place the second unit at right angle and centered to the first base unit. Continue to install the base units right and left of the first inside corner units;
- Place the second unit at right angle and centered to the 1st unit on the second course;
- Make sure second course units are placed at a 5/8” setback to the lower inside corner for Fortus Square Foot™;
- Continue to install the units left and right of the inside corner to complete the second course of the wall;
- Repeat the above step by step installation until the wall height is completed or until reaching the first geogrid layer.

Second Geogrid Layer:
- Each geogrid length should be laid perpendicularly to the wall face;
- Geogrid should not overlap on the units;
- Lay the 1st geogrid corner section perpendicularly to one side of the corner and overlap h/4 through the backfill (Height of Wall ÷ 4);
- Lay the 2nd geogrid section perpendicularly to the 1st geogrid;
- Lay the second geogrid layer perpendicularly and overlap h/4 through the backfill opposite to the first geogrid layer;
- The h/4 overlap will alternate layer to layer to properly secure the inside corner;
- Correct geogrid orientation, strength and length is crucial to the success of the wall project.

Step 1 Inside First Course

Step 2 Inside Geogrid Corner
Stair Details

Proper installation of stairs in a wall project requires the same care and thoroughness as the creation of the wall itself. Fortus Square Foot™ design features include the hollow core, and SecureLug simplify the process and provide installers with a range of options to create stairs that are striking and unique. This section provides illustrated step-by-step instructions for using Fortus Square Foot™ to construct stair details.

★ Please Note: **Bolded** installation terms are defined in our online glossary at: www.liberty-stone.net/glossary
Stair Details

Step 1 Base Leveling Pad

- When building steps, exercise the same care used in typical wall construction;
- Prepare the sub-base and base leveling pad by following Gravity Wall Installation Steps 1 to 9;
- Build each step in sequence with each course of the regular wall units for best results of wall to step interlock.

Step 2 Lay First Course

- First base units will have the SecureLugs removed before placing on the leveling pad;
- First course of step units will be totally buried;
- Backfill behind the first course units with gravel, then compact and level flush to the top of the first course;
- Do not fill the step units' hollow cores with gravel if you plan to use concrete.

Step 3 Lay Second Course

- Place the second course of units on top of the base units;
- Place a second row of units back to back behind the second course of units on half bond;
- Backfill behind the second course of units with gravel, then compact and level flush to the top of the second course;
- Do not fill the step units’ hollow cores with gravel if you plan to use concrete.
Step 4 Lay Third Course

- Place the third course of units on the lower backward facing units with the SecureLugs placed into the 2 hollow cores of the lower units on half bond;
- Pull the units forward to lock the SecureLugs into the lower backward units;
- The third course units will be in a forward batter approximately 1.5 inch leaving 10.5 inches exposed on the front first step;
- Place a second row of units back to back behind the third course of units on half bond.

Step 5 Continue Installation

- Continue to install each course of step units following the same steps as above;
- The top and final step does not need backward units.
Stair Details

Step 6 Concrete Core Steps

- Concrete filling the cores of all the step units will provide for greater stair stability;
- Concrete core fill flush to the top of the units;
- Use a steel bar to hand vibrate the cores to insure proper filling;
- Option: Unit cores can be filled with gravel but must be well compacted.

Step 7 Stair Treads

- 12 inch deep cap units can be used as a stair tread;
- Option: Pavers, Patio Slabs or Natural Stone can also be used as a stair tread.
Stair Details

Step 8 8” Riser Cross Section

- The 12 inch cap will overhang the step units by approximately 1.5 inch on each step;
- The riser will be a full 8 inches using the above installation;
- Properly secure the cap units using a concrete adhesive;
- Make sure all units are free of dirt and stones before installing;
- Place a bead of adhesive between each joint of the caps.

Step 9 Lower Step Risers

- Lower risers can be made such as 6” or 7” by lowering the buried units 1 to 2 inches below the top of the backward buried unit;
- Larger treads can be created by moving the buried units back off the forward step course 3 to 4 inches to create a 15 to 16 inch tread;
- A variety of riser heights and tread lengths can be created to suit your project.
Pillar Details

Pillars add a finishing touch of elegance to any Fortus Square Foot™ wall project. They can be used to create distinguished entranceways to any residence or business and the unit’s hollow cores greatly simplify the placement of lighting in the pillars. This section provides simple instructions for the creation of a 27” pillar.

★ Please Note: **Bolded** installation terms are defined in our online glossary at: www.liberty-stone.net/glossary
Pillar Details

Step 1 Leveling Pad

- Excavate and prepare your **Sub Base Leveling Pad**;
- Install leveling pad of well graded gravel (also known as road base aggregates) a minimum of 8” thick and 40” square. Compact to 95% standard proctor density;
- Install the first 4 corner units perpendicular and square to each other;
- Ensure first base course is level and square to the center of the pad;
- Bury the first course completely for stability.

90° Corner Unit:

Fortus Square Foot™ 8” 90° Corner Unit:
8” Height x 18” Width x 9” Depth
Weight: 74 lbs

Step 2 Second Course

- Place second course of the **90° Corner** units directly on top of the first course;
- Flip and turn the second course corner units upside down to create an overlapping bond;
- **Clear Crush Drain Gravel** (Angular Aggregates free of fines) should be placed in the cores and middle of pillar (concrete core filling optional) use a dry concrete mix to prevent leaching of cement;
- **Concrete Adhesive** should be applied to all units to ensure course to course interlock.

Step 3 Additional Course

- Repeat Step 1 and Step 2 until desired height of pillar has been reached.

Step 4 Completion

- Complete the pillar with a **Pillar Cap**;
- Secure the Pillar Cap with a concrete adhesive *Pillar cap approximately 32”.*
Estimating Charts

The soil friction angle in these charts is used to calculate the pressure soil will have on Fortus Square Foot™ Geogrid reinforced walls. This guide outlines 26, 30 & 34 degree friction angle soil types. Additionally, three different top-of-wall load conditions are used in each of the soil types i.e. no surcharge load, 100 psf load and a 3 to 1 slope.

The assumed weight for the three soil types is approximately 120 lb/ft³. A well graded gravel leveling pad with a minimum of (8”) unit of burial is assumed for base sliding resistance. All sub base, leveling pad and backfill materials should be compacted to a minimum of 95% Standard Proctor.

The Rear Lugs built into Fortus Square Foot™ has a batter or setback of 4.5 degrees (1”/vertical foot) The Front Lug has a near vertical batter of 1 degrees. For more specific soil analysis refer to our website, or consult a qualified engineer. These preliminary design charts are used by owner, designer, architect and installer to calculate construction cost only and are not for construction purposes. A qualified engineer should be consulted for a final construction design.

Geogrids

Geogrids are meshes typically made of a regular pattern of tensile elements usually made of a fairly rigid type of plastic. These are used to strengthen fill materials in geotechnical applications. They provide increased shear strength between soil strata interfaces. Their tensile strength can prevent or decrease the degree of differential settlement in some applications such as beneath structures or roads by transmitting the load over a broader area of soil, thereby diminishing the vertical stress — and subsequent compression — in the soil.
Case A Flat At Top & Bottom Of Wall ~ No Surcharge

26° Soil ~ High Plastic Silts and Clays

Exposed Hgt wo/cap | 2'0" | 2'8" | 4'0" | 4'8" | 6'0" | 8'0"
Block per Ln Ft | 2.67 | 3.33 | 4.67 | 5.33 | 6.67 | 8.67
Cap per Ln Ft | .67 | .67 | .67 | .67 | .67 | .67

Case A Flat At Top & Bottom Of Wall ~ 100 PSF Surcharge

Exposed Hgt wo/cap | 2'0" | 2'8" | 4'0" | 4'8" | 6'0" | 8'0"
Block per Ln Ft | 2.67 | 3.33 | 4.67 | 5.33 | 6.67 | 8.67
Cap per Ln Ft | .67 | .67 | .67 | .67 | .67 | .67

Case A 3/1 Slope at Top - Flat Bottom

Exposed Hgt wo/cap | 2'0" | 2'8" | 4'0" | 4'8" | 6'0" | 8'0"
Block per Ln Ft | 2.67 | 3.33 | 4.67 | 5.33 | 6.67 | 8.67
Cap per Ln Ft | .67 | .67 | .67 | .67 | .67 | .67

DO NOT USE FOR CONSTRUCTION ★ FOR PRELIMINARY ESTIMATION ONLY
The above charts are intended for preliminary estimation only and all designs must be reviewed by a professional engineer. Use of the charts are the sole responsibility of the user. CornerStone Wall Solutions Inc. assumes no liability for improper use of the charts.
Case A: Flat At Top & Bottom Of Wall ~ No Surcharge

<table>
<thead>
<tr>
<th>Exposed Hgt w/o cap</th>
<th>2'0"</th>
<th>2'8"</th>
<th>4'0"</th>
<th>4'8"</th>
<th>6'0"</th>
<th>8'0"</th>
</tr>
</thead>
<tbody>
<tr>
<td># Block per Ln Ft</td>
<td>2.67</td>
<td>3.33</td>
<td>4.67</td>
<td>5.33</td>
<td>6.67</td>
<td>8.67</td>
</tr>
<tr>
<td># Cap per Ln Ft</td>
<td>.67</td>
<td>.67</td>
<td>.67</td>
<td>.67</td>
<td>.67</td>
<td>.67</td>
</tr>
</tbody>
</table>

Case A: Flat At Top & Bottom Of Wall ~ 100 PSF Surcharge

<table>
<thead>
<tr>
<th>Exposed Hgt w/o cap</th>
<th>2'0"</th>
<th>2'8"</th>
<th>4'0"</th>
<th>4'8"</th>
<th>6'0"</th>
<th>8'0"</th>
</tr>
</thead>
<tbody>
<tr>
<td># Block per Ln Ft</td>
<td>2.67</td>
<td>3.33</td>
<td>4.67</td>
<td>5.33</td>
<td>6.67</td>
<td>8.67</td>
</tr>
<tr>
<td># Cap per Ln Ft</td>
<td>.67</td>
<td>.67</td>
<td>.67</td>
<td>.67</td>
<td>.67</td>
<td>.67</td>
</tr>
</tbody>
</table>

Case A: 3/1 Slope at Top - Flat Bottom

<table>
<thead>
<tr>
<th>Exposed Hgt w/o cap</th>
<th>2'0"</th>
<th>2'8"</th>
<th>4'0"</th>
<th>4'8"</th>
<th>6'0"</th>
<th>8'0"</th>
</tr>
</thead>
<tbody>
<tr>
<td># Block per Ln Ft</td>
<td>2.67</td>
<td>3.33</td>
<td>4.67</td>
<td>5.33</td>
<td>6.67</td>
<td>8.67</td>
</tr>
<tr>
<td># Cap per Ln Ft</td>
<td>.67</td>
<td>.67</td>
<td>.67</td>
<td>.67</td>
<td>.67</td>
<td>.67</td>
</tr>
</tbody>
</table>

34° Soil ~ Sandy Gravel

Case A

Flat At Top & Bottom Of Wall ~ No Surcharge

<table>
<thead>
<tr>
<th>Exposed Hgt w/o cap</th>
<th>2'0"</th>
<th>2'8"</th>
<th>4'0"</th>
<th>4'8"</th>
<th>6'0"</th>
<th>8'0"</th>
</tr>
</thead>
<tbody>
<tr>
<td># Block per Ln Ft</td>
<td>2.67</td>
<td>3.33</td>
<td>4.67</td>
<td>5.33</td>
<td>6.67</td>
<td>8.67</td>
</tr>
<tr>
<td># Cap per Ln Ft</td>
<td>.67</td>
<td>.67</td>
<td>.67</td>
<td>.67</td>
<td>.67</td>
<td>.67</td>
</tr>
</tbody>
</table>

Case A

Flat At Top & Bottom Of Wall ~ 100 PSF Surcharge

<table>
<thead>
<tr>
<th>Exposed Hgt w/o cap</th>
<th>2'0"</th>
<th>2'8"</th>
<th>4'0"</th>
<th>4'8"</th>
<th>6'0"</th>
<th>8'0"</th>
</tr>
</thead>
<tbody>
<tr>
<td># Block per Ln Ft</td>
<td>2.67</td>
<td>3.33</td>
<td>4.67</td>
<td>5.33</td>
<td>6.67</td>
<td>8.67</td>
</tr>
<tr>
<td># Cap per Ln Ft</td>
<td>.67</td>
<td>.67</td>
<td>.67</td>
<td>.67</td>
<td>.67</td>
<td>.67</td>
</tr>
</tbody>
</table>

Case A

3/1 Slope at Top - Flat Bottom

<table>
<thead>
<tr>
<th>Exposed Hgt w/o cap</th>
<th>2'0"</th>
<th>2'8"</th>
<th>4'0"</th>
<th>4'8"</th>
<th>6'0"</th>
<th>8'0"</th>
</tr>
</thead>
<tbody>
<tr>
<td># Block per Ln Ft</td>
<td>2.67</td>
<td>3.33</td>
<td>4.67</td>
<td>5.33</td>
<td>6.67</td>
<td>8.67</td>
</tr>
<tr>
<td># Cap per Ln Ft</td>
<td>.67</td>
<td>.67</td>
<td>.67</td>
<td>.67</td>
<td>.67</td>
<td>.67</td>
</tr>
</tbody>
</table>

DO NOT USE FOR CONSTRUCTION ★ FOR PRELIMINARY ESTIMATION ONLY

The above charts are intended for preliminary estimation only and all designs must be reviewed by a professional engineer. Use of the charts are the sole responsibility of the user. CornerStone Wall Solutions Inc. assumes no liability for improper use of the charts.
Fortus Square Foot™
Retaining Wall System

Straight Face Colors

WILLLOW
BRANDY
CHESTNUT

NUTMEG
WEST MOUNTAIN
DESERT

LibertyStone™ Hardscaping Systems manufactures the Fortus Square Foot™ Retaining Wall System with some of the most beautiful and distinctive color blends in the industry. The Fortus Square Foot™ system has been designed to accommodate nearly every type of retaining wall application. Photos of our walls portrayed in this guide are approximate representations. Exact colors and appearance may vary as our products are made from 100% natural aggregates. We recommend that you make your selections from actual product samples available from your local LibertyStone™ dealer.

Fortus Square Foot™ Marketing Materials

LibertyStone™ Website
General Brochures
Installation Guide
LibertyStone™ Catalog

© Copyright LibertyStone™ Hardscaping Systems